

WELLE

Organizational Water Footrpint Tool

Database documentation

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung Version 1.3 February 2020

Table of Contents

Table of C	Contents2
1	Introduction4
2	Data and Regionalization Approach6
2.1	Indirect Upstream - Purchased Fuels and Energies7
2.2	Indirect Upstream – Purchased Goods and Materials - Agricultural Products7
2.3	Indirect Upstream – Purchased Goods and Materials – Chemicals/plastics7
2.4	Indirect Upstream – Purchased Goods and Materials – Metals8
2.4.1	Aluminium9
2.4.2	Cast Iron9
2.4.3	Steel non alloyed10
2.4.4	Steel alloyed10
2.4.5	Stainless Steel10
2.4.6	Brass10
2.4.7	Lead11
2.4.8	Silver11
2.4.9	Gold11
2.4.10	Nickel11
2.4.11	Copper11
2.4.12	Tin12
2.5	Indirect Upstream – Purchased Goods and Materials – Other purchased materials
2.5.1	Wooden Pallet13
2.5.2	Cardboard13
2.5.3	Silicone13
2.5.4	Generic Product/ Other13
2.6	Indirect Upstream – Purchased Services13

2.7	Direct Activities	3
2.8	Indirect Downstream Activities1	3
2.9	Supporting Activities1	4
2.9.1	Business Travel and Employee Commuting14	4
2.9.2	Canteen1	5
2.9.3	Capital Equipment10	6
2.9.4	Working Environment	8
Annex I: C	Driginal GaBi Datasets20	0
Indirect Up	stream Activities - Purchased Fuels and Energies2	0
Indirect Up	stream Activities – Agricultural Products3	0
Indirect Up	stream Activities - Purchased Goods and Materials - Chemicals/Plastics3	0
Indirect Up	stream Activities - Purchased Goods and Materials - Metals	2
Indirect Up	stream Activities - Purchased Goods and Material - Other purchased materials	34
Supporting	Activities – Business Travels and Employee Commuting	5
Supporting	Activities – Canteen	6
Supporting	Activities – Capital equipment3	6
Supporting	Activities – Working Environment - Laptop	7

1 Introduction

The WELLE Organizational Water Footprint Tool (WELLE tool) is developed as part of the research project *The Water Foorptint of Companies: Local Measures in Global Supply Chains (WELLE)* founded by the German Federal Ministry of Education and Research within the funding measure *Global Resource Water (GRoW)*. The project aims to develop methodological and practical solutions for determining the overall water scarcity footprint of companies (organizational water scarcity footprint). The WELLE project is initiated by the Chair of Sustainable Engineering at TU Berlin in partnership with thinkstep AG. Deutsches Kupferinstitut e.V., Evonik AG, Neoperl GmbH, and Volkswagen AG are participating industry partners that support the project with case studies.

For more information please visit: <u>https://welle.see.tu-berlin.de/</u>

Organizational water footprint method

The method was developed in a two-step approach. In a first publication, available tools to track the water-related environmental performance of companies were analysed via a multi-criteria approach evaluating e.g. their scientific soundness, environmental relevance, organizational system boundaries, and broadness of application (Forin et al. 2018). As a result, the product related water footprint method (according to ISO 14046 (ISO 2014a)) was chosen as a starting point to develop the organizational water footprint approach, in combination with organizational LCA (ISO/TS 14072 (ISO 2014b)). A further publication (Forin et al. 2019) discussed how both methods, based on ISO standards, can be hybridized. Moreover, application guidelines e.g. to prioritize data collection, are delivered.

Regionalized water inventory database

While most companies can monitor their internal activities comparatively easy, they rely on external data about the water consumption of their indirect upstream activities (material and energy supply chain). Thinkstep's life cycle inventory database GaBi 8 is used for this purpose. As a first step, relevant datasets are identified by the participating companies. These datasets are investigated comprehensively and modified to better meet the demand for detailedness expressed in the case studies. Important modifications include the allocation of generic processes to their typical location, and the disaggregation of datasets, allowing the selection of country specific energy and material mixes or market mixes based on several countries.

WELLE Organizational Water Footprint Tool

To facilitate the use of the provided inventory data, a web-based tool is provided and cat accessed charge under be free of http://wf-tools.see.tu-berlin.de/wftools/owf/#/calculation. The tool guides the user through the different compartments of the organizational water footprint. To assess direct water consumption, the user can enter water withdrawal and discharge data of production sites in high geographical resolution. In terms of indirect upstream and downstream activities, users can enter purchased goods and materials as well as water consumption during product's use phase. In combination with the water inventory database described above, the tool allows to assess the water consumption of an entire organization and weights the results by water scarcity in its respective locations, using the consensus-based impact assessment method AWaRe (Boulay et al. 2018). A detailed tool manual is provided here: http://wftools.see.tu-berlin.de/wf-tools/owf/#/manual.

The WELLE Organizational Water Footprint Tool is based on the GaBi Envision software and runs on a fully parameterised LCA GaBi model.

Disclaimer:

The WELLE Tool is not intended for conducting comparative assertions, as defined by the ISO 14040/44 Standards and Guidelines. The current release has not been externally reviewed for compliance with mentioned ISO standards.

thinkstep AG is not liable for the up-to-datedness, correctness, usability, completeness and quality of any calculations, conclusions and other results obtained through the use of the software provided by thinkstep AG and the user data. Any liability of thinkstep AG regarding the use of the calculations, conclusions and other results obtained through the software use is excluded. The user is solely responsible for the up-to-datedness, correctness, usability, completeness and quality of his data, any calculations, conclusions and other results obtained by his data and their subsequent use. He or she bears the sole risk of possible miscalculations, incompleteness, incorrectness and any further deficiencies. thinkstep AG is solely responsible for providing the software and the content already included therein as defined in the software licensing terms.

2 Data and Regionalization Approach

Thinkstep has published a comprehensive introduction into the water assessment terminology, and details on how water consumption and its environmental impact can be assessed using GaBi software and databases:

http://www.gabi-

software.com/fileadmin/Documents/Introduction_to_Water_Assessment_V2.2.pdf

It is strongly recommended to consult this document before working with the WELLE tool, and it is also the basis to understand the following explanations about modifications made to the datasets to increase regional representativeness.

The water consumption and impact assessment values in the tool are based on GaBi data (version 8.7, service pack 36). Please refer to Annex I for a complete list of the original GaBi datasets used. A detailed documentation of the inventory data of these datasets can be found online (see Annex I for details). Please refer to the respective online documentation of the datasets for descriptions of system boundaries, technological representativeness, allocation procedures and other. The following section describes the modification of these datasets to increase regional representativeness.

As described in the "introduction into water assessment in GaBi" document (see above), only energy and agricultural materials GaBi datasets use regionally specific water flows. While these processes will cover the largest fraction of water consumption in most production systems, potentially a significant fraction of water consumption remains unspecified and is subject to large uncertainty regarding water scarcity. As part of the WELLE research project, the unspecified water consumption of a selection of datasets (identified in the related case studies) is investigated in more detail, and two different approaches (depending on the material group) are taken to allocate it to a specific region.

The first approach is to modify existing datasets to increase regional representativeness (i.e. unspecific flows changed to country specific flows). Country specific inventories are maintained, accounting for country specific water consumption intensity. This approach can be summarized as "bottom-up" approach. This approach was preferred if the structure of the datasets and the confidentiality of data allowed it. In some cases, following this approach was not possible, either because the underlaying country and industry specific data is confidential, or did not cover the most important production regions. In these cases, an average water consumption is derived from the available data and then mapped to different countries according to production statistics ("top-down" approach).

In addition, the tool allows the user to allocate the water consumption according to their

own supply chain data.

The following section describes the regionalization approach applied for each material group separately.

General Remark:

The selection of materials and countries displayed in the tool is based on the case studies that accompanied the development of the tool. While many organizations might find it useful to use the tool as a first screening assessment of their own activities, others might find that regions and/or materials important to them are missing. In this cases thinkstep offers a customization of the tool. Please refer to the contact details given at the end of this document.

2.1 Indirect Upstream - Purchased Fuels and Energies

Fuel and energy datasets are available in GaBi in a regional specific version, the original datasets were not modified.

2.2 Indirect Upstream – Purchased Goods and Materials - Agricultural Products

Agriculture is the single largest contributor to global water consumption (UN Water 2019¹). The regional variation on water consumption of agricultural crops is very large (starting with the differentiation whether a crop is rainfed or irrigated). Also, agricultural products exist in a large variety. Therefore, only two example products were added to the tool. A generic data entry point allows to add water consumption and location from other data sources.

2.3 Indirect Upstream – Purchased Goods and Materials – Chemicals/plastics

A selection of different plastics is available in the tool. The original datasets in the GaBi database refer to specific countries (e.g. Germany, US), but the WELLE tool intends to represent global supply chains. The supply chains of chemicals are very complex and almost impossible to track after Tier 1 (final processing by direct supplier). Therefore, the tool allows to select the region of the final processing stage, and the water and energy mix in this process step will be adjusted accordingly. All energy and water use processes in the supply chain (Tier 2 and beyond) for each material were adapted to a global production mix, based on data from the world input output database (WIOD²; manufacture

¹ <u>https://www.unwater.org/water-facts/water-food-and-energy/</u>

² <u>http://www.wiod.org/database/wiots16</u>

of chemicals and chemical products, value added share). The Top 10 countries (by value added) were selected (representing 85% of value added, see Table 1) and scaled to 100%. The list of GaBi datasets used can be found in Annex I.

Table 1: Global production mix for chemicals/plastic used as a proxy for supply chain modelling (tier 2 and beyond)

Country	Share
China	47%
USA	19%
Japan	7%
Korea	6%
Germany	6%
India	4%
Brazil	4%
France	3%
Italy	2%
Spain	2%

2.4 Indirect Upstream – Purchased Goods and Materials – Metals

In the section metals, the user should be able to select the main countries of origin for each respective material. When no specifications are made, a global mix is used as default. The list of the (original) GaBi datasets used can be found in Annex I and used to retrieve the full documentation of the datasets online. The list of main producing countries is based in data from the U.S. Geological Survey, Mineral Commodity Summaries³ for the year 2015 or more recent, unless stated otherwise.

³ <u>https://www.usgs.gov/centers/nmic/commodity-statistics-and-information</u>

2.4.1 Aluminium

An Aluminum sheet is assumed (AIMg4.5Mn0.7). For the Aluminum ingot, LCA datasets from the International Aluminium Institute (IAI)⁴ are used, as implemented in the GaBi database. Some of the published datasets refer to regions above country level (e.g. South America, North America, Oceania). The respective datasets have been used as proxies for specific countries (see Table 2). A global dataset is available and is used as default in the tool. It is also used as a proxy for India, with re-regionalization (i.e. water consumption value used from global dataset and mapped to India).

Country in the tool (main production countries)	IAI dataset
Australia	Oceania
Brazil	South America
China	China
Global	Global
India	Global
Russia	Russia and Other Europe
USA	North America

Table 2: Regional IAI datasets used as proxies for specific countries

It should be noted that the IAI has assessed the water scarcity footprint of aluminium on sub-country level, resulting in much lower figures than those based on the country average as available in GaBi (see "introduction into water assessment in GaBi" and Buxmann et al. (2016). For technical and consistency reasons, the tool uses the values available in GaBi DB. If identified as hotspot, the values should be refined using data from the IAI LCA report³.

2.4.2 Cast Iron

The original GaBi dataset is used, referring to iron scrap (secondary material) melted in an electric furnace. Electricity and thermal energy used in the process are adapted

⁴ <u>http://www.world-aluminium.org/media/filer_public/2018/02/19/lca_report_2015_final_26_june_2017.pdf</u>

according to the selected region. The global production mix (default setting) is based on data from worldsteel 2018 (world steel in figures 2018⁵).

2.4.3 Steel non alloyed

The original GaBi dataset is used (BF steel billet/slab/ bloom), referring to processing via blast furnace route. The dataset assumes an input of secondary material of 20%. The tool allows the selection of the country of origin of iron ore as primary material, and the country of the steel production. For Iron ore, a "re-regionalization approach" is taken, i.e. the aggregated water consumption of the process is mapped to the selected country. For steel production, the energy provision dataset is selected according to the region chosen and the direct water use mapped accordingly. The global production mix (default setting) is based on data from worldsteel 2018 (world steel in figures 2018⁴).

2.4.4 Steel alloyed

See 3.4.3, assumed alloy is 4340 (Mn 0.75% *, Si 0.225%, Cr 0.8%, Mo 0.25%, Ni 1.8%).

2.4.5 Stainless Steel

The water consumption values based on an average of different datasets from the European Steel Association Eurofer (stainless steel cold rolled coil (316), stainless steel quarto plate (316) and stainless-steel white hot rolled coil (316)) are used. The datasets consider content of recycled material for the steel and its alloys. As nickel (ferronickel) is a main contributor to water consumption, the tool allows to specify the country of origin for nickel separately. Please see section 2.4.10 for details about the nickel dataset used. The global production mix (default setting) is based on data from worldsteel 2018 (world steel in figures 2018⁴).

2.4.6 Brass

The GaBi Brass dataset (red brass; anode furnace and casting, 85% copper, 6% zinc, 2% lead, 7% tin) is used. The dataset assumes a secondary material input of 90% (10% primary material). The dataset allows specification of the country for final processing to brass, and the country of origin of copper as the largest contributor to water consumption.

For processing to brass, water is regionalized following the top-down approach. As no data for a global production mix of brass were available, the main producing countries (CN, IN, US according to expert judgement) were assumed to contribute equally to global production as a proxy. For the production of copper, please see section 2.4.11 for details

⁵ <u>https://www.worldsteel.org/en/dam/jcr:f9359dff-9546-4d6b-bed0-996201185b12/World+Steel+in+Figures+2018.pdf</u>

about the dataset used.

2.4.7 Lead

The dataset is based on lead production in China (main producing country according to U.S. Geological Survey, Mineral Commodity Summaries), 100% primary material. The tool allows re-regionalization (top-down, i.e. water consumption value for CN mapped to different countries). The global production mix is based on data from the U.S. Geological Survey, Mineral Commodity Summaries.

2.4.8 Silver

The GaBi dataset (global silver mix; from electrolysis, primary) is used. The dataset was modified to increase regional representativeness (bottom-up, i.e. unspecific flows changed to country specific flows where applicable). The global dataset is used as default in the tool. The tool allows re-regionalization (i.e. global average water consumption value can be mapped to different countries).

2.4.9 Gold

The GaBi dataset (global gold mix; primary) is used. The dataset was modified to increase regional representativeness (bottom-up, i.e. unspecific flows changed to country specific flows were applicable). The global dataset is used as default in the tool. The tool allows re-regionalization (i.e. global average water consumption value can be mapped to different countries).

2.4.10 Nickel

The water consumption value based on the nickel (Class 1, 99.95%, primary) ILCD 2017 dataset from the Nickel Institute is used. As association data, it is representing the industry average well, but disaggregation of the data to different regions is not possible due to confidentiality. Therefore, the tool allows re-regionalization (top-down, i.e. global water consumption value can be mapped to different countries).

2.4.11 Copper

The GaBi dataset (global copper mix, 99,999%, from electrolysis, primary) is used. The dataset was modified to increase regional representativeness (bottom-up, i.e. unspecific flows changed to country specific flows were applicable). The global dataset is used as default in the tool. The tool allows re-regionalization (i.e. global average water consumption value can be mapped to different countries).

2.4.12 Tin

The GaBi dataset (tin, primary) is used. The dataset was modified to increase regional representativeness (bottom-up, i.e. unspecific flows changed to country specific flows were applicable). The global dataset is used as default in the tool. The tool allows re-regionalization (i.e. global average water consumption value can be mapped to different countries).

2.5 Indirect Upstream – Purchased Goods and Materials – Other purchased materials

2.5.1 Wooden Pallet

The water consumption is based on the GaBi dataset "wooden pallets (EURO, 40% moisture)". The tool allows re-regionalization (top-down, i.e. average water consumption value can be mapped to different countries).

2.5.2 Cardboard

The water consumption is based on the GaBi dataset "Corrugated board 2015, 84.5% recycled fibre, for use in cut-off EoL". The tool allows re-regionalization (top-down, i.e. average water consumption value can be mapped to different countries).

2.5.3 Silicone

The water consumption is based on the GaBi dataset "Silicone fluids (low viscosity); from organosilane". The tool allows re-regionalization (top-down, i.e. average water consumption value can be mapped to different countries).

2.5.4 Generic Product/ Other

A generic data entry point allows to add water consumption and location from other data sources.

2.6 Indirect Upstream – Purchased Services

In the category "purchased services" the values of water consumption and location need to be entered directly, no datasets are used in the background.

2.7 Direct Activities

In the category "direct activities" the values of water consumption and location need to be entered directly, no datasets are used in the background. Use of tabwater or de-inonised water accounts for additional water consumed in provision of water from external sources (average based on GaBi datasets for provision of tab water and de-ionised water), similar, waste water treatment accounts for water losses before release.

2.8 Indirect Downstream Activities

In the category "Indirect Downstream Activities" the values of water consumption and location need to be entered directly, no datasets are used in the background.

2.9 Supporting Activities

Supporting activities are assessed either by direct data entry or by default datasets. Where water use data is entered directly, location specific characterization factors can be added in addition to the possibility of selecting countries. No additional regionalization was conducted for the default datasets. This means, that only water use related to energy or agriclutre is regionalized, other water use is classified as "unspecified". Given the large variety of datasets and possible supply chains with expected low contribution to overall results, this is assumed to be an acceptable simplification. The following table gives an overview of the regionalization approach for supporting activities.

Activety	Can regionalization be changed?	Comment
Business Travels	Yes	Energy datasets selected based on country selection
Employee Commuting	Yes	Energy datasets selected based on country selection
Canteen	No	Default datasets for meals, agricultural water use is regionalized
Capital equipment	No	Default datasets for materials used in builing, machinery and company cars, might contain unspecified flows
Working environment - Work places	No	Default datasets for materials used electronic devices, table, chair, might contain unspecified flows
Working environment – Adminstration, cleaning services, gardening, R&D	Yes	Water use needs to be entered directly, country can be selected or specific characterization factor can be applied

Table 3: Regionalization approaches for supporting activities

2.9.1 Business Travel and Employee Commuting

The fuel/ electricity consumption values per km are based on the following GaBi datasets (see Annex 1 for full reference): distance travelled by plane; distance travelled by ICE train; Car, diesel, Euro 6. Datasets for the provision of diesel, kerosene and electricity are selected based on the chosen country. Provision of fuel datasets are fully regionalized in

GaBi per default and were not modified.

2.9.2 Canteen

The water consumption of meals is defined using unpublished GaBi datasets. As the documentation cannot be retrieved online, more details are provided in the following. The datasets are proxies compiled to assess the contribution of the canteen to an organizational water footprint (which is usually low). They should not be used to make comparative assertions regarding different diets.

All meals refer to freshly made canteen food prepared on an electric stove and to a value of 735 kcal per meal (functional unit). The selection and amount of food products / ingredients is based on a mix of fat, protein and carbohydrates, following an approximate proportion of 1/4 protein, 1/4 vegetables and 1/2 starch.

The average meal consists of an average of three different dishes each with a distinct composition of ingredients (see Table 4). The food products are sourced from different countries in the world to represent a global average.

Meal	Vegan	Vegetarian	Meat
weight of ingredients per meal	698.8g	737.3g	453.5g
Food products	* rice	* wheat	* beef
used (ingredients).	* soy bean	* oat	* poultry
	* barley	* milk	* pork
	* sweet corn	* potato	* rice
	* carrot	* carrot	* soy bean
	* tomato	* tomato	* potato
	* olive oil	* cashew nut	* carrot
	* cashew nut	* olive oil	
	* wheat	* mozzarella	
		* butter	
		* cheddar	

Table 4: Ingredients of the canteen meals

The assumed electric energy consumption for cooking the meals is 0.6kWh per 400g of ingredients. The following processes are <u>not</u> included in the datasets:

- tap water input for cooking
- use of salt, pepper and herbs
- tap water input for washing
- production of equipment like stove, knives and spoons
- packaging of food products
- transportation of food products
- end-of-life treatment of food residues during cooking and post consuming

The soft drink dataset refers to a non-alcoholic drink provided as beverage in a canteen for lunch. The amount per soft drink is defined as 0.2l (200g). The average drink composition is defined as:

- 40 wt% water = 80g
- 35 wt% of apple juice = 70g
- 20 wt% of orange juice = 40g
- 5 wt% of sugar = 10g

The following processes are <u>not</u> included in the dataset:

- Packaging of drinks and related waste
- Possible refrigeration of drinks in the canteen and related electric energy
- Production and distribution of drinks (e.g. filling stations and transportation to canteen)

2.9.3 Capital Equipment

<u>Building</u>

A list of different building materials is available in this category. Table 5 provides the materials, the respective dataset used (see Annex 1 for complete reference and online documentation for details) and the default value of material used per m² and year capital equipment if no specific values are entered. The default lifetime of the building is assumed to be 50 years. This value can be customized in the WELLE tool.

Table 5: Capital equipment, building, materials and default values

Material	GaBi Dataset	Default (kg freshwater/m ^{2*} yr)
Aluminium	Aluminium extrusion profile (AlCu4SiMg)	0.15
Cement	Cement mix	6.75
Concrete	Concrete bricks (EN15804 A1-A3)	6.30
Copper	Copper mix (99,999% from electrolysis)	0.15
Wood	Sawmill, lumber hardwood	0.24
Glass	Float flat glass	0.15
Stone	Fire proof stones (alumina- rich)	1.01
Steel	EAF Steel Billet	0.38

Machinery

A list of different building materials is available in this category. Table 6 provides the materials, the respective dataset used (see Annex 1 for complete reference and online documentation for details) and the default value of material used per kg and year machinery equipment if no specific values are entered. The default lifetime of the machinery is assumed to be 10 years.

Material	GaBi Dataset	Default (kg freshwater/kg material)
Aluminium	Aluminium extrusion profile (AlCu4SiMg)	0.2
Copper	Copper mix (99,999% from electrolysis)	0.2
Plastics	Polyvinyl chloride granulate (Suspension; S-PVC) mix	0.2
Stainless steel	Stainless steel sheet (including stamping and bending)	0.2

Steel	EAF Steel Billet	0.2
-------	------------------	-----

Company cars

The manufacturing of a car is assessed based on the GaBi dataset "passenger car (medium, gasoline, 1 piece)".

2.9.4 Working Environment

Work place

Each workplace assumes one table, one chair, one laptop and one display.

The materials used in the table and chair are considered based on the background report "Revision of Ecolabel and Green Public Procurement criteria for the product group Wooden Furniture" from the JRC⁶. The laptop and display are modelled based on a list of GaBi datasets for electronics, which are provided on a per piece basis (see Annex 1).

Other working environment

In the category "Administration", "Cleaning Services", "Gardening" and "R&D" the values of water consumption and location need to be entered directly, no datasets are used in the background.

⁶ <u>https://susproc.jrc.ec.europa.eu/furniture/docs/Background_report_Furniture_September_2013.pdf</u>

References

Boulay A-M, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A, Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T, Worbe S, Pfister S (2018) The WULCA consensus characterization model for water scarcity footprints. Assessing impacts of water consumption based on available water remaining (AWARE). Int J Life Cycle Assess 23(2):368–378. doi:10.1007/s11367-017-1333-8

Buxmann K, Koehler A, Thylmann D (2016) Water scarcity footprint of primary aluminium. Int J Life Cycle Assess 21(11):1605–1615. doi:10.1007/s11367-015-0997-1

Forin S, Berger M, Finkbeiner M (2018) Measuring Water-Related Environmental Impacts of Organizations. Existing Methods and Research Gaps. Adv. Sustainable Syst. 2(10):1700157. doi:10.1002/adsu.201700157

Forin S, Mikosch N, Berger M, Finkbeiner M (2019) Organizational water footprint. A methodological guidance. Int J Life Cycle Assess 46(7):4091. doi:10.1007/s11367-019-01670-2

ISO (2014a) ISO 14046: Environmental management – Water footprint – Principles, requirements and guidelines

ISO (2014b) ISO/TS 14072: Environmental management – Life cycle assessment – Requirements and guidelines for organizational life cycle assessment

Annex I: Original GaBi Datasets

The following section provides the name of the original datasets related to the different data entry points in the tool. For most datasets the documentation can be retrieved online (please refer to the Original GaBi dataset name)⁷:

http://www.gabi-software.com/international/databases/gabi-data-search

The tool database is based on GaBi version 8.7, service pack 36.

Indirect Upstream	Activities	- Purchased	Fuels and	Energies
-------------------	-------------------	-------------	-----------	----------

ΤοοΙ		Original GaBi dataset and GUID			Documentation
Crude Oil	Belgium	BE	Crude oil mix	d94dd6a7-5aef-4ca9-b230-a93ad36beeba	Online
Crude Oil	Chile	CL	Crude oil mix	e417cc39-499f-4bdf-b138-1692fd493be2	Online
Crude Oil	China	CN	Crude oil mix	ad54a4b6-c9bb-40a1-866d-9d57981ef958	Online
Crude Oil	Germany	DE	Crude oil mix	5eae7362-a5c0-4493-a6ef-9ba948bf72c6	Online
Crude Oil	EU-28	EU- 28	Crude oil mix	9941ad21-08ce-4139-96e6-997d75dd8058	Online
Crude Oil	France	FR	Crude oil mix	d47001bc-d98c-4dae-a711-ec6a0646fe2e	Online
Crude Oil	Great Britain	GB	Crude oil mix	102b8bd9-a287-4635-8f4c-8fac57afdd63	Online

⁷ Datasets might also be searched with the following link and exchanging the GUID (in red): http://gabi-documentation-2019.gabi-software.com/xml-data/processes/d94dd6a7-5aef-4ca9-b230-

Crude Oil	USA	US	Crude oil mix	0da1a0f1-e156-46ad-a5d9-4079c044450c	Online
Crude Oil	South Africa	ZA	Crude oil mix	817741b2-4c79-44dc-b3b7-b521f8008796	Online
Diesel	China	CN	Diesel mix at refinery	d4895001-c3e1-4f58-afd0-8cb464868508	Online
Diesel	EU-28	DE	Diesel mix at refinery	a0140c70-4135-4039-a587-7996dfb33137	Online
Diesel	France	EU- 28	Diesel mix at refinery	244524ed-7b85-4548-b345-f58dc5cf9dac	Online
Diesel	Germany	FR	Diesel mix at refinery	392fcdbc-2765-4d9d-85fe-f139411bc00c	Online
Diesel	Great Britain	GB	Diesel mix at refinery	b12d25d6-5eeb-46be-8a74-2d9284fb3e86	Online
Diesel	United States of America	US	Diesel mix at refinery	452a3926-2850-47db-809d-753095ed7dac	Online
Diesel	South Africa	ZA	Diesel at refinery	54c67034-a9bf-4126-a289-a8d57ab87bc0	Online
Hard Coal	Belgium	BE	Hard coal mix	92c4a1d0-1d72-4ee6-b1a3-b99bf3343a4a	Online
Hard Coal	Chile	CL	Hard coal mix	378c81b6-0650-4a00-a4fd-be76d8c1eb04	Online
Hard Coal	China	CN	Hard coal mix	a7bddf0b-69f3-4d86-9b82-69ac14102518	Online
Hard Coal	EU-28	DE	Hard coal mix	9b8f8237-c6d3-4976-bc14-300e25b755b5	Online
Hard Coal	France	EU- 28	Hard coal mix	fd9db250-4998-11dd-ae16-0800200c9a66	Online
Hard Coal	Germany	FR	Hard coal mix	2c3014d0-6b31-4bb6-ac58-1913172a1d83	Online
Hard Coal	Great Britain	GB	Hard coal mix	27c4ca8f-245e-4be5-a74b-2e8fa4fbd0f1	Online

	United States				Online
Hard Coal	of America	US	Hard coal mix	8813f9a2-1b05-4aac-9088-5c796f5471c4	
Hard Coal	South Africa	ZA	Hard coal mix	db3f50be-6cfa-4fe5-8c66-2cc2e93c9024	Online
Heavy Fuel Oil (H	HFO)				Online
1.0wt.% S	China	CN	Heavy fuel oil at refinery (1.0 wt.% S)	32f0067c-a74a-4cd6-84e0-203f7e87004e	
Heavy Fuel Oil (H	HFO)				Online
1.0wt.% S	Germany	DE	Heavy fuel oil at refinery (1.0 wt.% S)	1a272035-3bb8-460e-88e1-9cdcd3194032	
Heavy Fuel Oil (H	HFO)	EU-			Online
1.0wt.% S	EU-28	28	Heavy fuel oil at refinery (1.0wt.% S)	50462b0d-7d2b-40d4-843e-9857061e3c08	
Heavy Fuel Oil (H	HFO)				Online
1.0wt.% S	France	FR	Heavy fuel oil at refinery (1.0 wt.% S)	808d9760-8f49-4907-931b-bb14a57015b4	
Heavy Fuel Oil (H	HFO)				Online
1.0wt.% S	Great Britain	GB	Heavy fuel oil at refinery (1.0 wt.% S)	97c0f3b2-6c68-4d1c-a505-acdacf789ed3	
Heavy Fuel Oil (H	HFO)				Online
1.0wt.% S	South Africa	ZA	Heavy fuel oil at refinery (1.0 wt.% S)	90759e48-0d9d-4dcb-839a-2517bf80bb89	
Natural Gas	Belgium	BE	Natural gas mix	a8592685-fa9d-4997-ace6-ba497605edc2	Online
Natural Gas	Chile	CL	Natural gas mix	1852c696-8c08-4abe-997f-036a33fb508c	Online
Natural Gas	China	CN	Natural gas mix	d41aef42-f9f3-42b5-a3b1-50285171db5d	Online
Natural Gas	EU-28	DE	Natural gas mix	297d0f72-a589-4624-a088-b33e12ecca15	Online
		EU-			Online
Natural Gas	France	28	Natural gas mix	c6387e19-933f-4726-a7ad-7a8050aa418c	

Natural Gas	Germany	FR	Natural gas mix	28027e17-1845-451e-a50a-2bee7e0757d7	Online
Natural Gas	Great Britain	GB	Natural gas mix	d67b8058-f299-40c1-a985-6c6f3f8b2646	Online
	United States				Online
Natural Gas	of America	US	Natural gas mix	90be2ca7-96eb-4949-8e6d-c60dd58018aa	
Natural Gas	South Africa	ZA	Natural gas mix	c2f5a575-b467-4a11-bcae-a276faadba61	Online
Electricity from grid	Belgium	BE	Electricity grid mix	383a1240-40c5-483a-bfae-1dbe2cd63f92	Online
Electricity from grid	Chile	CL	Electricity grid mix	a7e9c47f-9aef-49e8-8f3a-72f88535089f	Online
Electricity from grid	China	CN	Electricity grid mix	124e9246-9e84-4352-86b5-c08837e8cf92	Online
Electricity from grid	France	FR	Electricity grid mix	c8d7f695-1c5b-4f9a-8491-8c58c20c190f	Online
Electricity from grid	Germany	DE	Electricity grid mix	48ab6f40-203b-4895-8742-9bdbef55e494	Online
Electricity from grid	Great Britain	GB	Electricity grid mix	00043bd2-4563-4d73-8df8-b84b5d8902fc	Online
Electricity from grid	United States of America	US	Electricity grid mix	6b6fc994-8476-44a3-81cc-9829f2dfe992	Online
Electricity from grid	South Africa	ZA	Electricity grid mix	12711ded-b092-4264-acfe-c65984b33b89	Online
Electricity from Biomass (solid)	n Belgium	BE	Electricity from biomass (solid)	14cf8b1f-8571-4bc5-8006-c12aab4493a3	Online
Electricity from		CI			Online
Biomass (solid)	Chile	CL	Electricity from biomass (solid)	a4462f57-031e-4aa4-94c9-d854657eee89	
Electricity from Biomass (solid)	ו China	CN	Electricity from biomass (solid)	85b5f7be-841f-49f3-8980-99bc152d2e1d	Online

Electricity from				Online
Biomass (solid) France	DE	Electricity from biomass (solid)	61c386e2-65cf-4d79-af2f-1892799ac11b	
Electricity from				Online
Biomass (solid) Germa	iny FR	Electricity from biomass (solid)	afc48658-7107-4963-8d8f-ab16ef800375	
Electricity from				Online
Biomass (solid) Great	Britain GB	Electricity from biomass (solid)	58c017ff-21ef-42fa-965d-b952d862b683	
Electricity from United	l States			Online
Biomass (solid) of Ame	erica US	Electricity from biomass (solid)	7d9d7452-0b7c-40ba-97d6-d6978481d3e3	
Electricity from				Online
Biomass (solid) South	Africa ZA	Electricity from biomass (solid)	da63b9be-c178-4da8-8087-f5fa2bd1a96b	
Electricity from Hard				Online
Coal Belgiu	m BE	Electricity from hard coal	110ee138-0b46-4c73-9e63-8e5b36e6586f	
Electricity from Hard				Online
Coal Chile	CL	Electricity from hard coal	abec60bb-3545-4e5f-844d-50c8ee0433b2	
Electricity from Hard				Online
Coal China	CN	Electricity from hard coal	cef5da69-a868-46b5-9147-97c31f62913f	
Electricity from Hard				Online
Coal France	DE	Electricity from hard coal	3bff4276-bda6-4e4f-8d65-c8f1fa5ae91a	
Electricity from Hard				Online
Coal Germa	iny FR	Electricity from hard coal	469f7bc3-f292-4d3d-88b1-0732347f916d	
Electricity from Hard				Online
Coal Great	Britain GB	Electricity from hard coal	f9355d35-4685-4832-9d3b-d57a78f88da5	
Electricity from Hard United	US	Electricity from hard coal	39a9f2aa-ac36-4ca6-82e0-f3f19512c54c	Online

Coal	of America				
Electricity from Hard					Online
Coal	South Africa	ZA	Electricity from hard coal	33c7fed9-b700-45ac-acdb-373c4e96f3fb	
Electricity from					Online
Heavy Fuel Oil (HFO)	Belgium	BE	Electricity from heavy fuel oil (HFO)	8bc7a251-e711-4dcd-b2cb-e161f74e4f45	
Electricity from					Online
Heavy Fuel Oil (HFO)	Chile	CL	Electricity from heavy fuel oil (HFO)	620c4791-2cb7-42ef-9eac-1f7e76953aa4	
Electricity from					Online
Heavy Fuel Oil (HFO)	China	CN	Electricity from heavy fuel oil (HFO)	7f5efe44-0d4e-417e-aaf5-2640413b8f73	
Electricity from					Online
Heavy Fuel Oil (HFO)	France	FR	Electricity from heavy fuel oil (HFO)	991ea307-2fb4-401f-8f9a-9c8bebf6a422	
Electricity from					Online
Heavy Fuel Oil (HFO)	Germany	DE	Electricity from heavy fuel oil (HFO)	cec6ed42-99f4-4cf2-89ee-d5810162c4fa	
Electricity from					Online
Heavy Fuel Oil (HFO)	Great Britain	GB	Electricity from heavy fuel oil (HFO)	a025869a-d69f-4042-8f67-d8b11d6b5218	
Electricity from	United States				Online
Heavy Fuel Oil (HFO)	of America	US	Electricity from heavy fuel oil (HFO)	2faf0b97-dade-4fe1-af12-0d4873d85b1e	
Electricity from					Online
Heavy Fuel Oil (HFO)	South Africa	ZA	Electricity from heavy fuel oil (HFO)	c523e75c-02d4-47a4-8a51-dc6b39988b94	
Electricity from	1				Online
Hydro Power	Belgium	BE	Electricity from hydro power	514d1b4c-14e8-4bad-af36-e7c879ca9018	
Electricity from					Online
Hydro Power	Chile	CL	Electricity from hydro power	205efa73-1932-4133-a9c1-7827df16ef8d	

Electricity	from				Online
Hydro Power	China	CN	Electricity from hydro power	66e21945-6c38-445f-a17b-16f909d0bd45	
Electricity	from				Online
Hydro Power	Germany	DE	Electricity from hydro power	86a54b74-fc71-41fa-8bb0-4722e8c61357	
Electricity	from	EU-			Online
Hydro Power	EU-28	28	Electricity from hydro power	99aa831c-4c28-438f-a87a-82382f5ef5df	
Electricity	from				Online
Hydro Power	France	FR	Electricity from hydro power	1d16489c-f2e3-4874-86c8-90684493105f	
Electricity	from				Online
Hydro Power	Great Britain	GB	Electricity from hydro power	444ed33f-fc5f-4252-8f12-ca2d7d8d5932	
Electricity	from United States				Online
Hydro Power	of America	US	Electricity from hydro power	b551703f-a21d-40a4-a018-e3b195d85e42	
Electricity	from				Online
Lignite	Germany	DE	Electricity from lignite	abd47264-8f40-43b0-9e8d-b771b5b743d5	
Electricity	from United States				Online
Lignite	of America	US	Electricity from lignite	92f6a93c-b435-49da-86d6-78f298f3a41b	
Electricity	from				Online
Natural Gas	Belgium	BE	Electricity from natural gas	843653fa-ab6c-4fbc-916e-db2cc8174f6a	
Electricity	from				Online
Natural Gas	Chile	CL	Electricity from natural gas	e94f0875-9ad2-492b-af48-4d6c6745eacf	
Electricity	from				Online
Natural Gas	China	CN	Electricity from natural gas	803931a3-9264-4e18-8f7b-e3bdfce30695	
Electricity	France from	FR	Electricity from natural gas	22779be7-84d9-4c35-933a-e81a6b82cd01	Online

Natural Gas					
Electricity Natural Gas	from Germany	DE	Electricity from natural gas	74791898-31d9-418a-a595-e761a25ab4b2	Online
Electricity Natural Gas	from Great Britain	GB	Electricity from natural gas	35708815-362d-44ec-bef4-798f70c5c4d0	Online
Electricity Natural Gas	from United States of America	US	Electricity from natural gas	9f85bfd1-212b-43a5-99d5-b0563913f6cc	Online
Electricity Nuclear	from Belgium	BE	Electricity from nuclear	3ba692de-e0b2-4c58-8796-d4cb139b88fe	Online
Electricity Nuclear	from China	CN	Electricity from nuclear	5e1a18d7-277f-4dc4-ba1a-f50fe62d49f7	Online
Electricity Nuclear	from France	FR	Electricity from nuclear	a3c14f99-f3d5-49c0-adcb-83899399f3fd	Online
Electricity Nuclear	from Germany	DE	Electricity from nuclear	c2ed464d-d5dd-429a-8614-5c24c3d2213a	Online
Electricity Nuclear	from Great Britain	GB	Electricity from nuclear	a06756a1-cca1-4276-97a8-e505205e096d	Online
Electricity Nuclear	from United States of America	US	Electricity from nuclear	ca86ff71-7b51-4686-9d40-9f8e09739a4c	Online
Electricity Nuclear	from South Africa	ZA	Electricity from nuclear	6eb2a68a-6e6d-4f20-8a54-51d0849a34f4	Online
Electricity Photovoltaic	from Belgium	BE	Electricity from photovoltaic	3b012c9c-cecb-4e33-8b6c-347be054b0ab	Online
		1			

Electricity	from				Online
Photovoltaic	Chile	CL	Electricity from photovoltaic	024a81d3-3563-4881-aa1b-34f6fdd20a82	
Electricity	from				Online
Photovoltaic	China	CN	Electricity from photovoltaic	564dfebf-9d0a-42f6-a9c1-5524d00c277c	
Electricity	from	EU-			Online
Photovoltaic	EU-28	28	Electricity from photovoltaic	d2842400-7718-47e1-8fea-6b35dbce7b80	
Electricity	from				Online
Photovoltaic	France	FR	Electricity from photovoltaic	5b51dbc1-49a9-447b-8224-d38fb4e5374c	
Electricity	from				Online
Photovoltaic	Germany	DE	Electricity from photovoltaic	9e55ee0e-2539-4015-ab03-a01529a91e57	
Electricity	from				Online
Photovoltaic	Great Britain	GB	Electricity from photovoltaic	a7523d4d-acb8-440a-a7ae-b3c820cfad27	
Electricity	from United State	s			Online
Photovoltaic	of America	US	Electricity from photovoltaic	cae1568c-b25c-4a6f-9829-49644d8d29f9	
Electricity	from				Online
Photovoltaic	South Africa	ZA	Electricity from photovoltaic	169c0556-cb2e-4735-a4ca-a49cf03cbc15	
Electricity fron	n Wind				Online
Power	Belgium	BE	Electricity from wind power	7a4fe9a4-582b-40e2-9ef5-6921bb893d9f	
Electricity fron	n Wind				Online
Power	Chile	CL	Electricity from wind power	6a48e8e2-ca6f-4871-b361-e17cee7316dc	
Electricity fron	n Wind				Online
Power	China	CN	Electricity from wind power	2b25be3a-c0d7-4780-ad87-1ab78d9ffa58	
Electricity fron	EU-28	EU-	Electricity from wind power	fe1c3d03-072b-4da7-8fff-3505f9b01efc	Online

Power		28			
Electricity from W	Vind				Online
Power	France	FR	Electricity from wind power	0204e9b6-815e-40a3-873f-8acb35fddda2	
Electricity from W	Vind				Online
Power	Germany	DE	Electricity from wind power	f932f79b-6251-4a77-bf04-5ce9bfea759f	
Electricity from W	Vind				Online
Power	Great Britain	GB	Electricity from wind power	37b5447f-8bd7-49b6-9b6e-c2d4205c39d3	
Electricity from W	Vind United States				Online
Power	of America	US	Electricity from wind power	2396c794-75d3-48b3-8933-6eebb701d1b7	
Electricity from W	Vind				Online
Power	South Africa	ZA	Electricity from wind power	19d687d3-372a-4add-8174-90b151c25371	

Indirect Upstream Activities – Agricultural Products

ΤοοΙ			Documentation	
Corn grains	US	US Corn graiı	ns, at field (20% H2O content) d742fed3-7b05-4719-975a-3f98e87049ff	Online
Soy bean oil	US	Soybean US allocation	oil, conditioned (economic) 59117f00-d80b-49b9-8ff0-5e9489c6cfdd	Online

Indirect Upstream Activities - Purchased Goods and Materials - Chemicals/Plastics

ΤοοΙ	Original GaBi dataset	Documentation
Acrylonitrile		Online
Butadiene Styrene	Acrylonitrile-Butadiene-Styrene	
Granulate (ABS) open	DE Granulate (ABS) 11f555e6-215b-4939-87b7-488ed8823822	
Polyvinylchloride open	Polyvinyl chloride granulate	Online
Granulate (S-PVC)	DE (Suspension; S-PVC) mix e7b9c3ac-8292-4595-ae46-5e5b2a616a7c	
Polyethylene open		Online
Terephthalate Fibres	EU-	
(PET)	28 Polyethylene terephthalate fibres (PET) db00901c-338f-11dd-bd11-0800200c9a66	
Polybutylene open		Online
Terephthalate	Polybutylene Terephthalate Granulate	
Granulate (PBT)	DE (PBT) 4cbfbc4f-d0fd-4c28-a0c5-90630007e34b	
Polyethylene Low open Density Granulate	DE 6de31fe6-71e3-41f9-a166-4afc89961653 Polyethylene Low Density Granulate	Online

(LDPE/PE-LD)	(LDPE/PE-LD)	
Polyethylene high open density granulate (HDPE/PE-HD)	EU- Polyethylene high density granulate 28 (HDPE/PE-HD) 5b30a5ab-bc4e-4316-bb18-f6605b382648	Online
Polyoxymethylene open Granulate (POM)	DE Polyoxymethylene granulate (POM) 6bc8dff8-d52d-4f6d-9af5-56cd2edd15b2	Online
Polyamide 6.6 open Granulate (PA 6.6) (HMDA)	DE Polyamide 6.6 Granulate (PA 6.6) Mix ece7efc0-b02a-4d80-9328-32a969bdab2c	Online
Polypropylene open Granulate (PP)	DE Polypropylene granulate (PP) c8e9efd5-fd8f-4da2-89ed-5a78e7ba6e42	Online
Nitrile butadiene open rubber (NBR)	Nitrile butadiene rubber (NBR, 33% DE acrylonitrile) 794b5228-6948-4587-bbe6-af2ceb1544e7	Online
Polysulfone (PSU) open	DE Polysulfone (PSU) 8f4b926b-0d70-47d6-9f85-3c37ac6631b0	Online
Epoxy resin (EP) open	DE Epoxy Resin (EP) Mix 50125a08-978e-4156-bcc0-2d13ec3b49c7	Online
Polyethylene Cross- open Linked (PEXa)	DE Polyethylene Cross-Linked (PEXa) 0cb4a09e-0614-4754-8773-c9efa124c04e	Online
Polyethylene open terephthalate granulate (PET)	Polyethylene terephthalate granulate DE (PET via DMT) d51b18f9-786f-45fe-8add-c300803d3e13	Online
Polyamide 6 open Granulate (PA 6)	DE Polyamide 6 Granulate (PA 6) Mix 6e078dba-bc25-44e6-bf33-364e72ca36fe	Online
open Ethylene propylene	DE 78f45ae7-6b25-481c-8b7e-db906d566f50 Ethylene Propylene Diene Elastomer	Online

diene (EPDM)	elastomer	(EPDM)	
	open		Online

Indirect Upstream Activities - Purchased Goods and Materials - Metals

ΤοοΙ			Original GaBi dataset		
Aluminium	CN	CN	Online		
Aluminium	GLO, IN	GLO	Alumina production mix IAI 2015	46429004-7fd0-4536-84d8-c2fff1685fd7	Online
Aluminium	BR	RLA	Alumina production mix IAI 2015	a50bde74-7bf1-45ed-a32f-92caf1e15f4d	Online
Aluminium	US	RNA	Alumina production mix IAI 2015	e43fa3e5-de4d-45fc-bd0a-66bdd9837641	Online
Aluminium	RU	RU	Alumina production mix IAI 2015	ea47e593-2b5a-4b61-997e-201c2b6837a8	Online
Aluminium	AU	OCE	Alumina production mix IAI 2015	343a36b9-09d0-4eab-8146-f46d5f12042c	Online
Cast Iron Part	open	DE	Cast iron part (automotive)	5235d35a-f878-4b72-b970-f3b393c205a5	Online
Steel alloyed - Iron Ore	¹ open	DE	Iron ore-mix	f5a7c0a7-507d-4de9-ba6b-bcbc7b787f77	Online
Steel alloyed - Steel production	l open	DE	BF Steel billet / slab / bloom		Online
Steel non- alloyed - Iron Ore	•	DE	Iron ore-mix	7b79d1c5-6208-49b2-9ef1-5bfe86d310dd f5a7c0a7-507d-4de9-ba6b-bcbc7b787f77	Online

Steel alloyed - Stee		DE	DE Steel billet / sleb / bloom		Online
production	open	DE	BF Steel billet / slab / bloom	7b79d1c5-6208-49b2-9ef1-5bfe86d310dd	
Stainless Steel	-	Ì		04dc7156-8fda-4c67-923e-e779abd20e49	Online
Nickel	open	GLO	Nickel (Class 1, 99.95%) ILCD 2017		
		EU-			Online
		28	Stainless steel white hot rolled coil (316)	b0f1825c-4911-4154-b478-5877ab51d0cc	
Stainless Steel –	open	EU-			Online
Steel production	open	28	Stainless steel cold rolled coil (316)	f16f6e7d-3e3b-4a43-8e6a-f95348df6d5c	
		EU-			Online
		28	Stainless steel Quarto plate (316)	d8019466-63c1-4f22-b9eb-26ef5cb60df5	
Brass - Copper	open	GLO	Copper mix (99,999% from electrolysis)	301d375b-4f27-43f2-bbe0-89f87cae0df1	Online
Brass – Brass		EU-			Online
Brass – Brass production	open	28	Red brass	aec78fed-cfd4-4f84-bd2d-accd3c5d1e7f	Onine
•	-				
Lead	Open	CN	Lead production	c7cbf0b1-cdfc-4b44-9ab4-b5f5007eee1f	Online
Silver	Open	GLO	Silver mix	521f27f6-95cf-4a87-ae24-3d60124ebc20	Online
Gold	Open	GLO	Gold (primary)	52112/10 5501 407 0024 500012405020	Online
Cold	open	010		21b5f6eb-4dbf-425b-a186-08f3fcae254e	onnie
	Open			04dc7156-8fda-4c67-923e-e779abd20e49	Online
Nickel		GLO	Nickel (Class 1, 99.95%) ILCD 2017		
Copper	Open	GLO	Copper mix (99,999% from electrolysis)	301d375b-4f27-43f2-bbe0-89f87cae0df1	Online
				cd01e11a-8582-4e67-9a3c-f49192dcf753	Online
Tin	Open	GLO	Tin		

Indirect Upstream Activities - Purchased Goods and Materials - Other purchased materials

ΤοοΙ		Original GaBi dataset	Documentation
Wooden Pallet	Open	EU- 28 Wooden pallets (EURO, 40% moisture) 79bdeef3-bcf4-4e52-b4b0-8b5375961c5e	Online
Silicone	Open	EU-Silicone fluids (low viscosity)286270432e-17f5-4555-b60d-2a1cbaef45a0	Online
Carboard	Open		Online

ΤοοΙ		Original GaBi dataset	Documentation
	Open (fuel input		Online
	according to	Diesel consumption based on dataset:	
	e e	U- distance travelled by plane (1000 km)	
Travel by plane	specified) 23		
	Open (fuel D		Online
	input	train based on dataset: distance	
	according to	travelled by ICE train >200 kmh (indirect)	
	region		
Travel by plane	specified)	68296794-70f8-4cc8-84cd-75d91ff7ce8d	
Purchased diesel	Open	See above, indirect Upstream Activities - Purchased Fuels and Energies	
	Open (fuel		Online
	input		
	according to		
	region	Car diesel, Euro 6, engine size more than 197b352d-c735-4680-b6c8-3e2e2cbc0bee	
Travel by car >2 L	specified) G	LO 21	
	Open (fuel		Online
	input		
	according to		
	region	c439a3a5-d729-4369-a0c7-78df69cddcad	
Travel by car <2 L	specified) G	LO Car diesel, Euro 6, engine size 1,4-2l ts	

Supporting Activities - Business Travels and Employee Commuting

Supporting Activities – Canteen

Datasets not published, see section 2.9.2.

Supporting Activities – Capital equipment

ΤοοΙ			Original GaBi dataset		
Aluminium	Open	DE Aluminium extrusion profile (AlCu4SiMg) f4115ae4-2ae8-435d-b079-625ee28a352e			
Cement	DE	DE	Cement mix	0fc886a2-07c9-4477-abe2-52fcbf087cce	Online
Concrete	DE	DE	Concrete bricks (EN15804 A1-A3)	d4b01bd8-6c45-466f-a64c-a093ec81643a	Online
Copper	GLO	GLO	Copper mix (99,999% from electrolysis)	301d375b-4f27-43f2-bbe0-89f87cae0df1	Online
Wood	DE	DE	Sawmill, lumber hardwood	e155e2c4-2675-4954-842d-3716b5409d4c	Online
Glass	DE	DE	Float flat glass	88da9a04-272e-4f75-8b69-8472bbcc7c5c	Online
Stone	DE	DE	Fire proof stones (alumina-rich)	e218c3be-41ed-415f-8eb7-bc4d3f0275a5	Online
Steel	Open	DE	EAF Steel Billet	4adb03ff-6762-4a6d-9279-1a02a4a392a4	Online
Plastics	DE	DE	Polyvinyl chloride granulate (Suspension; S-PVC) mix	e7b9c3ac-8292-4595-ae46-5e5b2a616a7c	Online
Stainless steel	DE	DE	Stainless steel sheet (including stamping and bending)	cad1ca32-e6ec-4f11-8876-395087ee3919	Online
Company Cars	DE	GLO	Passenger car (medium, gasoline, 1 piece); construction of a passenger car; single route, at plant; material		Online

quantities adjustable (en); upstream	
processes included from GaBi DB	

Supporting Activities – Working Environment - Laptop

ΤοοΙ	Original GaBi dataset	Documentation
(included in working place)	Average Printed Wiring Board with Signal-Power Electronics (DfX- GLO Compatible) a85ab330-50a9-4053-85ab-2464a4cfedd3	Online
	Average Printed Wiring Board with GLO Signal Electronics (DfX-compatible) 32cbfe31-f0f2-4286-b66f-f6a63eec46b9	Online
	RAM Bar SO-DIMM 8 discrete ICs (68 mm GLO x 32 mm, 200 PIN) bcde2ec1-9016-4c7e-8c25-ad41462d1523	Online
	DE Fan HDD (120X25mm, PWM) 948da94b-1552-4acd-9b97-f17568c3dc8a	Online
	DE Fan PSU (78X25mm, not PWM) d4de1222-ae97-4a9e-8357-ced256efa6e7	Online
	Hard disk drive (HDD), 2.5", 4 platters, 8 GLO sides, 15 mm high df72e8f6-17ea-4d55-9630-a6fa61f84c5b	Online
	GLO ODD Laptop a823ee05-b39d-4dd3-9d27-3be69b4d6acb	Online
	GLO Display (Laptop) 8a02ee39-ce90-4c69-8963-f6abedbd1dba	Online